
ARTICLE IN PRESS
0951-8320/$ - see front m

doi:10.1016/j.ress.2005.1

�Corresponding auth

E-mail address: kona
Reliability Engineering and System Safety 91 (2006) 992–1007

www.elsevier.com/locate/ress
Multi-objective optimization using genetic algorithms: A tutorial

Abdullah Konaka,�, David W. Coitb, Alice E. Smithc

aInformation Sciences and Technology, Penn State Berks, USA
bDepartment of Industrial and Systems Engineering, Rutgers University
cDepartment of Industrial and Systems Engineering, Auburn University

Available online 9 January 2006
Abstract

Multi-objective formulations are realistic models for many complex engineering optimization problems. In many real-life problems,

objectives under consideration conflict with each other, and optimizing a particular solution with respect to a single objective can result

in unacceptable results with respect to the other objectives. A reasonable solution to a multi-objective problem is to investigate a

set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution. In this

paper, an overview and tutorial is presented describing genetic algorithms (GA) developed specifically for problems with multiple

objectives. They differ primarily from traditional GA by using specialized fitness functions and introducing methods to promote solution

diversity.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The objective of this paper is present an overview and
tutorial of multiple-objective optimization methods using
genetic algorithms (GA). For multiple-objective problems,
the objectives are generally conflicting, preventing simulta-
neous optimization of each objective. Many, or even most,
real engineering problems actually do have multiple-
objectives, i.e., minimize cost, maximize performance,
maximize reliability, etc. These are difficult but realistic
problems. GA are a popular meta-heuristic that is
particularly well-suited for this class of problems. Tradi-
tional GA are customized to accommodate multi-objective
problems by using specialized fitness functions and
introducing methods to promote solution diversity.

There are two general approaches to multiple-objective
optimization. One is to combine the individual objective
functions into a single composite function or move all but
one objective to the constraint set. In the former case,
determination of a single objective is possible with methods
such as utility theory, weighted sum method, etc., but the
atter r 2005 Elsevier Ltd. All rights reserved.

1.018

or.

k@psu.edu (A. Konak).
problem lies in the proper selection of the weights or utility
functions to characterize the decision-maker’s preferences.
In practice, it can be very difficult to precisely and
accurately select these weights, even for someone familiar
with the problem domain. Compounding this drawback is
that scaling amongst objectives is needed and small
perturbations in the weights can sometimes lead to quite
different solutions. In the latter case, the problem is that to
move objectives to the constraint set, a constraining value
must be established for each of these former objectives.
This can be rather arbitrary. In both cases, an optimization
method would return a single solution rather than a set of
solutions that can be examined for trade-offs. For this
reason, decision-makers often prefer a set of good solutions
considering the multiple objectives.
The second general approach is to determine an entire

Pareto optimal solution set or a representative subset. A
Pareto optimal set is a set of solutions that are
nondominated with respect to each other. While moving
from one Pareto solution to another, there is always a
certain amount of sacrifice in one objective(s) to achieve a
certain amount of gain in the other(s). Pareto optimal
solution sets are often preferred to single solutions because
they can be practical when considering real-life problems

www.elsevier.com/locate/ress

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 993
since the final solution of the decision-maker is always a
trade-off. Pareto optimal sets can be of varied sizes, but the
size of the Pareto set usually increases with the increase in
the number of objectives.

2. Multi-objective optimization formulation

Consider a decision-maker who wishes to optimize K

objectives such that the objectives are non-commensurable
and the decision-maker has no clear preference of the
objectives relative to each other. Without loss of generality,
all objectives are of the minimization type—a minimization
type objective can be converted to a maximization type by
multiplying negative one. A minimization multi-objective
decision problem with K objectives is defined as follows:
Given an n-dimensional decision variable vector
x ¼ {x1,y,xn} in the solution space X, find a vector x*
that minimizes a given set of K objective functions
z(x*) ¼ {z1(x*),y,zK(x*)}. The solution space X is gen-
erally restricted by a series of constraints, such as
gj(x*) ¼ bj for j ¼ 1, y, m, and bounds on the decision
variables.

In many real-life problems, objectives under considera-
tion conflict with each other. Hence, optimizing x with
respect to a single objective often results in unacceptable
results with respect to the other objectives. Therefore, a
perfect multi-objective solution that simultaneously opti-
mizes each objective function is almost impossible. A
reasonable solution to a multi-objective problem is to
investigate a set of solutions, each of which satisfies the
objectives at an acceptable level without being dominated
by any other solution.

If all objective functions are for minimization, a feasible
solution x is said to dominate another feasible solution y

(x � y), if and only if, zi(x)pzi(y) for i ¼ 1, y, K and
zj(x)ozj(y) for least one objective function j. A solution is
said to be Pareto optimal if it is not dominated by any other
solution in the solution space. A Pareto optimal solution
cannot be improved with respect to any objective without
worsening at least one other objective. The set of all
feasible non-dominated solutions in X is referred to as the
Pareto optimal set, and for a given Pareto optimal set, the
corresponding objective function values in the objective
space are called the Pareto front. For many problems, the
number of Pareto optimal solutions is enormous (perhaps
infinite).

The ultimate goal of a multi-objective optimization
algorithm is to identify solutions in the Pareto optimal
set. However, identifying the entire Pareto optimal set,
for many multi-objective problems, is practically impos-
sible due to its size. In addition, for many problems,
especially for combinatorial optimization problems, proof
of solution optimality is computationally infeasible. There-
fore, a practical approach to multi-objective optimization
is to investigate a set of solutions (the best-known Pareto

set) that represent the Pareto optimal set as well as
possible. With these concerns in mind, a multi-objective
optimization approach should achieve the following three
conflicting goals [1]:
1.
 The best-known Pareto front should be as close as
possible to the true Pareto front. Ideally, the best-known
Pareto set should be a subset of the Pareto optimal set.
2.
 Solutions in the best-known Pareto set should be
uniformly distributed and diverse over of the Pareto
front in order to provide the decision-maker a true
picture of trade-offs.
3.
 The best-known Pareto front should capture the whole
spectrum of the Pareto front. This requires investigating
solutions at the extreme ends of the objective function
space.

For a given computational time limit, the first goal is
best served by focusing (intensifying) the search on a
particular region of the Pareto front. On the contrary, the
second goal demands the search effort to be uniformly
distributed over the Pareto front. The third goal aims at
extending the Pareto front at both ends, exploring new
extreme solutions.
This paper presents common approaches used in multi-

objective GA to attain these three conflicting goals while
solving a multi-objective optimization problem.

3. Genetic algorithms

The concept of GA was developed by Holland and his
colleagues in the 1960s and 1970s [2]. GA are inspired by
the evolutionist theory explaining the origin of species. In
nature, weak and unfit species within their environment are
faced with extinction by natural selection. The strong ones
have greater opportunity to pass their genes to future
generations via reproduction. In the long run, species
carrying the correct combination in their genes become
dominant in their population. Sometimes, during the slow
process of evolution, random changes may occur in genes.
If these changes provide additional advantages in the
challenge for survival, new species evolve from the old
ones. Unsuccessful changes are eliminated by natural
selection.
In GA terminology, a solution vector xAX is called an

individual or a chromosome. Chromosomes are made of
discrete units called genes. Each gene controls one or more
features of the chromosome. In the original implementa-
tion of GA by Holland, genes are assumed to be binary
digits. In later implementations, more varied gene types
have been introduced. Normally, a chromosome corre-
sponds to a unique solution x in the solution space. This
requires a mapping mechanism between the solution space
and the chromosomes. This mapping is called an encoding.
In fact, GA work on the encoding of a problem, not on the
problem itself.
GA operate with a collection of chromosomes, called a

population. The population is normally randomly initia-
lized. As the search evolves, the population includes fitter

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007994
and fitter solutions, and eventually it converges, meaning
that it is dominated by a single solution. Holland also
presented a proof of convergence (the schema theorem) to
the global optimum where chromosomes are binary
vectors.

GA use two operators to generate new solutions from
existing ones: crossover and mutation. The crossover
operator is the most important operator of GA. In
crossover, generally two chromosomes, called parents, are
combined together to form new chromosomes, called
offspring. The parents are selected among existing chromo-
somes in the population with preference towards fitness so
that offspring is expected to inherit good genes which make
the parents fitter. By iteratively applying the crossover
operator, genes of good chromosomes are expected to
appear more frequently in the population, eventually
leading to convergence to an overall good solution.

The mutation operator introduces random changes into
characteristics of chromosomes. Mutation is generally
applied at the gene level. In typical GA implementations,
the mutation rate (probability of changing the properties of
a gene) is very small and depends on the length of the
chromosome. Therefore, the new chromosome produced
by mutation will not be very different from the original
one. Mutation plays a critical role in GA. As discussed
earlier, crossover leads the population to converge by
making the chromosomes in the population alike. Muta-
tion reintroduces genetic diversity back into the population
and assists the search escape from local optima.

Reproduction involves selection of chromosomes for the
next generation. In the most general case, the fitness of an
individual determines the probability of its survival for the
next generation. There are different selection procedures in
GA depending on how the fitness values are used.
Proportional selection, ranking, and tournament selection
are the most popular selection procedures. The procedure
of a generic GA [3] is given as follows:

Step 1: Set t ¼ 1. Randomly generate N solutions to
form the first population, P1. Evaluate the fitness of
solutions in P1.
Step 2: Crossover: Generate an offspring population Qt

as follows:
2.1. Choose two solutions x and y from Pt based on
the fitness values.
2.2. Using a crossover operator, generate offspring
and add them to Qt.
Step 3: Mutation: Mutate each solution xAQt with a
predefined mutation rate.
Step 4: Fitness assignment: Evaluate and assign a fitness
value to each solution xAQt based on its objective
function value and infeasibility.
Step 5: Selection: Select N solutions from Qt based on
their fitness and copy them to Pt+1.
Step 6: If the stopping criterion is satisfied, terminate the
search and return to the current population, else, set
t ¼ t+1 go to Step 2.
4. Multi-objective GA
Being a population-based approach, GA are well suited
to solve multi-objective optimization problems. A generic
single-objective GA can be modified to find a set of
multiple non-dominated solutions in a single run. The
ability of GA to simultaneously search different regions of
a solution space makes it possible to find a diverse set of
solutions for difficult problems with non-convex, discon-
tinuous, and multi-modal solutions spaces. The crossover
operator of GA may exploit structures of good solutions
with respect to different objectives to create new non-
dominated solutions in unexplored parts of the Pareto
front. In addition, most multi-objective GA do not require
the user to prioritize, scale, or weigh objectives. Therefore,
GA have been the most popular heuristic approach to
multi-objective design and optimization problems. Jones et
al. [4] reported that 90% of the approaches to multi-
objective optimization aimed to approximate the true
Pareto front for the underlying problem. A majority of
these used a meta-heuristic technique, and 70% of all meta-
heuristics approaches were based on evolutionary ap-
proaches.
The first multi-objective GA, called vector evaluated GA

(or VEGA), was proposed by Schaffer [5]. Afterwards,
several multi-objective evolutionary algorithms were devel-
oped including Multi-objective Genetic Algorithm
(MOGA) [6], Niched Pareto Genetic Algorithm (NPGA)
[7], Weight-based Genetic Algorithm (WBGA) [8], Ran-
dom Weighted Genetic Algorithm (RWGA)[9], Nondomi-
nated Sorting Genetic Algorithm (NSGA) [10], Strength
Pareto Evolutionary Algorithm (SPEA) [11], improved
SPEA (SPEA2) [12], Pareto-Archived Evolution Strategy
(PAES) [13], Pareto Envelope-based Selection Algorithm
(PESA) [14], Region-based Selection in Evolutionary
Multiobjective Optimization (PESA-II) [15], Fast Non-
dominated Sorting Genetic Algorithm (NSGA-II) [16],
Multi-objective Evolutionary Algorithm (MEA) [17],
Micro-GA [18], Rank-Density Based Genetic Algorithm
(RDGA) [19], and Dynamic Multi-objective Evolutionary
Algorithm (DMOEA) [20]. Note that although there are
many variations of multi-objective GA in the literature,
these cited GA are well-known and credible algorithms
that have been used in many applications and their
performances were tested in several comparative studies.
Several survey papers [1,11,21–27] have been published

on evolutionary multi-objective optimization. Coello lists
more than 2000 references in his website [28]. Generally,
multi-objective GA differ based on their fitness assign-
ment procedure, elitisim, or diversification approaches. In
Table 1, highlights of the well-known multi-objective with
their advantages and disadvantages are given. Most survey
papers on multi-objective evolutionary approaches intro-
duce and compare different algorithms. This paper takes
a different course and focuses on important issues while
designing a multi-objective GA and describes common
techniques used in multi-objective GA to attain the three

ARTICLE IN PRESS

Table 1

A list of well-known multi-objective GA

Algorithm Fitness assignment Diversity mechanism Elitism External

population

Advantages Disadvantages

VEGA [5] Each subpopulation is

evaluated with respect

to a different

objective

No No No First MOGA

Straightforward

implementation

Tend converge to the

extreme of each objective

MOGA [6] Pareto ranking Fitness sharing by

niching

No No Simple extension of single

objective GA

Usually slow

convergence

Problems related to niche

size parameter

WBGA [8] Weighted average of

normalized objectives

Niching No No Simple extension of single

objective GA

Difficulties in nonconvex

objective function spacePredefined weights

NPGA [7] No fitness

assignment,

tournament selection

Niche count as tie-

breaker in tournament

selection

No No Very simple selection

process with tournament

selection

Problems related to niche

size parameter

Extra parameter for

tournament selection

RWGA [9] Weighted average of

normalized objectives

Randomly assigned

weights

Yes Yes Efficient and easy

implement

Difficulties in nonconvex

objective function space

PESA [14] No fitness assignment Cell-based density Pure elitist Yes Easy to implement Performance depends on

cell sizesComputationally efficient

Prior information needed

about objective space

PAES [29] Pareto dominance is

used to replace a

parent if offspring

dominates

Cell-based density as

tie breaker between

offspring and parent

Yes Yes Random mutation hill-

climbing strategy

Not a population based

approach

Easy to implement Performance depends on

cell sizesComputationally efficient

NSGA [10] Ranking based on

non-domination

sorting

Fitness sharing by

niching

No No Fast convergence Problems related to niche

size parameter

NSGA-II [30] Ranking based on

non-domination

sorting

Crowding distance Yes No Single parameter (N) Crowding distance works

in objective space onlyWell tested

Efficient

SPEA [11] Raking based on the

external archive of

non-dominated

solutions

Clustering to truncate

external population

Yes Yes Well tested Complex clustering

algorithmNo parameter for

clustering

SPEA-2 [12] Strength of

dominators

Density based on the

k-th nearest neighbor

Yes Yes Improved SPEA Computationally

expensive fitness and

density calculation

Make sure extreme points

are preserved

RDGA [19] The problem reduced

to bi-objective

problem with solution

rank and density as

objectives

Forbidden region cell-

based density

Yes Yes Dynamic cell update More difficult to

implement than othersRobust with respect to the

number of objectives

DMOEA [20] Cell-based ranking Adaptive cell-based

density

Yes (implicitly) No Includes efficient

techniques to update cell

densities

More difficult to

implement than others

Adaptive approaches to

set GA parameters

A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 995
goals in multi-objective optimization. This approach is also
taken in the survey paper by Zitzler et al. [1]. However, the
discussion in this paper is aimed at introducing the
components of multi-objective GA to researchers and
practitioners without a background on the multi-objective
GA. It is also import to note that although several of the
state-of-the-art algorithms exist as cited above, many
researchers that applied multi-objective GA to their
problems have preferred to design their own customized
algorithms by adapting strategies from various multi-
objective GA. This observation is another motivation for
introducing the components of multi-objective GA rather
than focusing on several algorithms. However, the pseudo-
code for some of the well-known multi-objective GA are
also provided in order to demonstrate how these proce-
dures are incorporated within a multi-objective GA.

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007996
5. Design issues and components of multi-objective GA

5.1. Fitness functions

5.1.1. Weighted sum approaches

The classical approach to solve a multi-objective
optimization problem is to assign a weight wi to each
normalized objective function z0iðxÞ so that the problem is
converted to a single objective problem with a scalar
objective function as follows:

min z ¼ w1z
0
1ðxÞ þ w2z02ðxÞ þ � � � þ wkz0kðxÞ, (1)

where z0iðxÞ is the normalized objective function zi(x)
and

P
wi ¼ 1. This approach is called the priori approach

since the user is expected to provide the weights.
Solving a problem with the objective function (1) for a
given weight vector w ¼ {w1, w2,y,wk} yields a single
solution, and if multiple solutions are desired, the
problem must be solved multiple times with different
weight combinations. The main difficulty with this
approach is selecting a weight vector for each run. To
automate this process; Hajela and Lin [8] proposed the
WBGA for multi-objective optimization (WBGA-MO)
in the WBGA-MO, each solution xi in the population uses
a different weight vector wi ¼ {w1, w2,y,wk} in the
calculation of the summed objective function (1). The
weight vector wi is embedded within the chromosome of
solution xi. Therefore, multiple solutions can be simulta-
neously searched in a single run. In addition, weight
vectors can be adjusted to promote diversity of the
population.

Other researchers [9,31] have proposed a MOGA based
on a weighted sum of multiple objective functions where a
normalized weight vector wi is randomly generated for each
solution xi during the selection phase at each generation.
This approach aims to stipulate multiple search directions
in a single run without using additional parameters. The
general procedure of the RWGA using random weights is
given as follows [31]:

Procedure RWGA:
E ¼ external archive to store non-dominated solutions

found during the search so far;
nE ¼ number of elitist solutions immigrating from E to P

in each generation.

Step 1: Generate a random population.
Step 2: Assign a fitness value to each solution xAPt by
performing the following steps:

Step 2.1: Generate a random number uk in [0,1] for
each objective k, k ¼ 1,y,K.

Step 2.2: Calculate the random weight of each
objective k as wk ¼ ð1=ukÞ

PK
i¼1ui.

Step 2.3: Calculate the fitness of the solution as
f ðxÞ ¼

PK
k¼1wkzkðxÞ.
Step 3: Calculate the selection probability of each solution
xAPt as follows: pðxÞ ¼ ðf ðxÞ � f min

Þ
�1P

y2Pt
ðf ðyÞ � f min

Þ

where f min
¼ minff ðxÞjx 2 Ptg.
Step 4: Select parents using the selection probabilities
calculated in Step 3. Apply crossover on the selected
parent pairs to create N offspring. Mutate offspring with
a predefined mutation rate. Copy all offspring to Pt+1.
Update E if necessary.
Step 5: Randomly remove nE solutions from Pt+1 and
add the same number of solutions from E to Pt+1.
Step 6: If the stopping condition is not satisfied, set t ¼

tþ 1 and go to Step 2. Otherwise, return to E.

The main advantage of the weighted sum approach is a
straightforward implementation. Since a single objective is
used in fitness assignment, a single objective GA can be
used with minimum modifications. In addition, this
approach is computationally efficient. The main disadvan-
tage of this approach is that not all Pareto-optimal
solutions can be investigated when the true Pareto front
is non-convex. Therefore, multi-objective GA based on
the weighed sum approach have difficulty in finding
solutions uniformly distributed over a non-convex trade-
off surface [1].

5.1.2. Altering objective functions

As mentioned earlier, VEGA [5] is the first GA used to
approximate the Pareto-optimal set by a set of non-
dominated solutions. In VEGA, population Pt is randomly
divided into K equal sized sub-populations; P1, P2,y, PK.
Then, each solution in subpopulation Pi is assigned a
fitness value based on objective function zi. Solutions are
selected from these subpopulations using proportional
selection for crossover and mutation. Crossover and
mutation are performed on the new population in the
same way as for a single objective GA.
Procedure VEGA:
NS ¼ subpopulation size (NS ¼ N=K)

Step 1: Start with a random initial population P0. Set
t ¼ 0.
Step 2: If the stopping criterion is satisfied, return Pt.
Step 3: Randomly sort population Pt.
Step 4: For each objective k, k ¼ 1,yK, perform the
following steps:

Step 4.1: For i ¼ 1þ ðk21ÞNS; . . . ; kNS, assign fit-
ness value f ðxiÞ ¼ zkðxiÞ to the ith solution in the
sorted population.
Step 4.2: Based on the fitness values assigned in Step
4.1, select NS solutions between the (1+(k�1)NS)th
and (kNS)th solutions of the sorted population to
create subpopulation Pk.
Step 5: Combine all subpopulations P1,y,Pk and apply
crossover and mutation on the combined population to
create Pt+1 of size N. Set t ¼ tþ 1, go to Step 2.

A similar approach to VEGA is to use only a single
objective function which is randomly determined each time
in the selection phase [32]. The main advantage of the
alternating objectives approach is easy to implement and

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 997
computationally as efficient as a single-objective GA. In
fact, this approach is a straightforward extension of a
single objective GA to solve multi-objective problems. The
major drawback of objective switching is that the popula-
tion tends to converge to solutions which are superior in
one objective, but poor at others.

5.1.3. Pareto-ranking approaches

Pareto-ranking approaches explicitly utilize the concept
of Pareto dominance in evaluating fitness or assigning
selection probability to solutions. The population is ranked
according to a dominance rule, and then each solution is
assigned a fitness value based on its rank in the population,
not its actual objective function value. Note that herein all
objectives are assumed to be minimized. Therefore, a lower
rank corresponds to a better solution in the following
discussions.

The first Pareto ranking technique was proposed by
Goldberg [3] as follows:

Step 1: Set i ¼ 1 and TP ¼ P.
Step 2: Identify non-dominated solutions in TP and
assigned them set to Fi.
Step 3: Set TP ¼ TPFi. If TP ¼+ go to Step 4, else set
i ¼ i þ 1 and go to Step 2.
Step 4: For every solution xAP at generation t, assign
rank r1ðx; tÞ ¼ i if xAFi.

In the procedure above, F1, F2,y are called non-
dominated fronts, and F1 is the Pareto front of population
P. NSGA [10] also classifies the population into non-
dominated fronts using an algorithm similar to that given
above. Then a dummy fitness value is assigned to each
front using a fitness sharing function such that the worst
fitness value assigned to Fi is better than the best fitness
value assigned to Fi+1. NSGA-II [16], a more efficient
algorithm, named the fast non-dominated-sort algorithm,
was developed to form non-dominated fronts. Fonseca and
Fleming [6] used a slightly different rank assignment
approach than the ranking based on non-dominated-fronts
as follows:

r2ðx; tÞ ¼ 1þ nqðx; tÞ; (2)

where nq(x,t) is the number of solutions dominating
solution x at generation t. This ranking method penalizes
solutions located in the regions of the objective function
space which are dominated (covered) by densely populated
sections of the Pareto front. For example, in Fig. 1b
solution i is dominated by solutions c, d and e. Therefore, it
is assigned a rank of 4 although it is in the same front with
solutions f, g and h which are dominated by only a single
solution.

SPEA [11] uses a ranking procedure to assign better
fitness values to non-dominated solutions at underrepre-
sented regions of the objective space. In SPEA, an external
list E of a fixed size stores non-dominated solutions that
have been investigated thus far during the search. For each
solution yAE, a strength value is defined as

sðy; tÞ ¼
npðy; tÞ

NP þ 1
,

where npðy; tÞ is the number solutions that y dominates in
P. The rank r(y,t) of a solution yAE is assigned as r3ðy; tÞ ¼
sðy; tÞ and the rank of a solution xAP is calculated as

r3ðx; tÞ ¼ 1þ
X

y2E;y�x

sðy; tÞ.

Fig. 1c illustrates an example of the SPEA ranking
method. In the former two methods, all non-dominated
solutions are assigned a rank of 1. This method, however,
favors solution a (in the figure) over the other non-
dominated solutions since it covers the least number of
solutions in the objective function space. Therefore, a wide,
uniformly distributed set of non-dominated solutions is
encouraged.
Accumulated ranking density strategy [19] also aims to

penalize redundancy in the population due to overrepre-
sentation. This ranking method is given as

r4ðx; tÞ ¼ 1þ
X

y2P;y�x

rðy; tÞ.

To calculate the rank of a solution x, the rank of the
solutions dominating this solution must be calculated first.
Fig. 1d shows an example of this ranking method (based on
r2). Using ranking method r4, solutions i, l and n are ranked
higher than their counterparts at the same non-dominated
front since the portion of the trade-off surface covering
them is crowded by three nearby solutions c, d and e.
Although some of the ranking approaches described in

this section can be used directly to assign fitness values to
individual solutions, they are usually combined with
various fitness sharing techniques to achieve the second
goal in multi-objective optimization, finding a diverse and
uniform Pareto front.

5.2. Diversity: fitness assignment, fitness sharing, and

niching

Maintaining a diverse population is an important
consideration in multi-objective GA to obtain solutions
uniformly distributed over the Pareto front. Without
taking preventive measures, the population tends to form
relatively few clusters in multi-objective GA. This phenom-
enon is called genetic drift, and several approaches have
been devised to prevent genetic drift as follows.

5.2.1. Fitness sharing

Fitness sharing encourages the search in unexplored
sections of a Pareto front by artificially reducing fitness of
solutions in densely populated areas. To achieve this goal,
densely populated areas are identified and a penalty

ARTICLE IN PRESS

z2

a
1

b
1

c
1

d
1

e
1

f
2

g
2

h
2

i
2

j
3

k
3

l
3

m
4

n
4

z2

a
1

b
1

c
1

d
1

e
1

f
2

g
2

h
2

i
4

j
5

k
4

l
6

m
5

n
8

a
2/15

b
7/15

c
5/15

d
4/15

e
3/15

f

g

h

i

j

k

l

m

n

z2

a
1

b
1

c
1

d
1

e
1

f
2

g
2

h
2

i
4

j
6

k
5

l
9

m
9

n
17

z1 z1

z1z1

z2

(a) (b)

(c) (d)

F2
F1

F3

F4

Fig. 1. Ranking methods used in multi-objective GA.

A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007998
method is used to penalize the solutions located in such
areas.

The idea of fitness sharing was first proposed by
Goldberg and Richardson [33] in the investigation of
multiple local optima for multi-modal functions. Fonseca
and Fleming [6] used this idea to penalize clustered
solutions with the same rank as follows:
Step 1: Calculate the Euclidean distance between every
solution pair x and y in the normalized objective space
between 0 and 1 as

dzðx; yÞ ¼

ffiXK

k¼1

zkðxÞ � zkðyÞ

zmax
k � zmin

k

 !2
vuut , (3)

where zmax
k and zmin

k are the maximum and minimum
value of the objective function zkð�Þ observed so far
during the search, respectively.
Step 2: Based on these distances, calculate a niche count
for each solution xAP as

ncðx; tÞ ¼
X

y2P;rðy;tÞ¼rðx;tÞ

max
sshare � dzðx; yÞ

sshare
; 0

� �
, (4)

where sshare is the niche size.
Step 3: After calculating niche counts, the fitness of each
solution is adjusted as follows:

f 0ðx; tÞ ¼
f ðx; tÞ

ncðx; tÞ
.

In the procedure above, sshare defines a neighborhood of
solutions in the objective space (Fig. 1a). The solutions in
the same neighborhood contribute to each other’s niche
count. Therefore, a solution in a crowded neighborhood
will have a higher niche count, reducing the probability of
selecting that solution as a parent. As a result, niching
limits the proliferation of solutions in one particular
neighborhood of the objective function space.
Another alternative is to use the distance in the decision

variable space between two solutions x and y which is
defined as

dxðx; yÞ ¼

ffi
1

M

XM
i¼1

ðxi � yiÞ
2

vuut (5)

in the calculation of niche count. Eq. (5) is a measure of the
structural differences between two solutions. Two solutions
might be very close in the objective function space while
they have very different structural features. Therefore,

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 999
fitness sharing based on the objective function space may
reduce diversity in the decision variable space. However,
Deb and Goldberg [34] reported that fitness sharing in
objective function space usually performs better than one
based on decision variable space.

One of the disadvantages of fitness sharing based on
niche count is that the user has to select a new parameter
sshare. To address this problem, Deb and Goldberg [34]
and Fonseca and Fleming [6] developed systematic
approaches to estimate and dynamically update sshare.
Another disadvantage of niching is computational effort to
calculate niche counts. However, benefits of fitness sharing
usually surpass the cost of extra computational effort.
Miller and Shaw [35] proposed a dynamic niche sharing
approach to increase effectiveness of computing niche
counts.

MOGA [6] was the first multi-objective GA that
explicitly used Pareto-based ranking and niching techni-
ques together to encourage the search toward the true
Pareto front while maintaining diversity in the population.
Therefore, it is a good example to demonstrate how Pareto-
based ranking and fitness sharing can be integrated in a
multi-objective GA. The procedure of the MOGA is given
as follows:

Procedure MOGA:
Step 1: Start with a random initial population P0. Set
t ¼ 0.
Step 2: If the stopping criterion is satisfied, return Pt.
Step 3: Evaluate fitness of the population as follows:

Step 3.1: Assign a rank r(x,t) to each solution xAPt

using the ranking scheme given in Eq. (2).
Step 3.2: Assign a fitness values to each solution
based on the solution’s rank as follows [36]:

f ðx; tÞ ¼ N �
Xrðx;tÞ�1

k¼1

nk � :5� ðnrðx;tÞ � 1Þ

where nk is the number of the solutions with rank k.
Step 3.3: Calculate the niche count ncðx; tÞ of each
solution xAPt using Eq. (4).
Step 3.4: Calculate the shared fitness value of each
solution xAPt as follows:

f 0ðx; tÞ ¼ f ðx; tÞ=ncðx; tÞ.

Step 3.5: Normalize the fitness values by using the
shared fitness values

f 00ðx; tÞ ¼
f 0ðx; tÞnrðx;tÞP
y2Pt

rðy;tÞ¼rðx;tÞ

f 0ðx; tÞ
f ðx; tÞ.
Step 4: Use a stochastic selection method based on f 00 to
select parents for the mating pool. Apply crossover and
mutation on the mating pool until offspring population
Qt of size N is filled. Set Ptþ1 ¼ Qt.
Step 5: Set t ¼ tþ 1, go to Step 2.
In SPEA2 [12], a density measure is used to discriminate
between solutions with the same rank, where the density of

a solution is defined as the inverse of the distance to its kth
closest neighbor in objective function space. The density of
a solution is similar to its niche count. However, selecting a
value for parameter k is more straightforward then
selecting a value for sshare.

5.2.2. Crowding distance

Crowding distance approaches aim to obtain a uniform
spread of solutions along the best-known Pareto front
without using a fitness sharing parameter. For example,
NSGA-II [16] uses a crowding distance method as follows
(Fig. 2b):

Step 1: Rank the population and identify non-domi-
nated fronts F1, F2, y, FR. For each front j ¼ 1, y, R

repeat Steps 2 and 3.
Step 2: For each objective function k, sort the solutions
in Fj in the ascending order. Let l ¼j Fj j and x½i;k�
represent the ith solution in the sorted list with respect
to the objective function k. Assign cdkðx½1;k�Þ ¼ 1 and
cdkðx½l;k�Þ ¼ 1, and for i ¼ 2, y, l�1 assign

cdkðx½i;k�Þ ¼
zkðx½iþ1;k�Þ � zkðx

k
½i�1;k�Þ

zmax
k � zmin

k

.

Step 3: To find the total crowding distance cd(x) of a
solution x, sum the solution’s crowding distances with
respect to each objective, i.e., cdðxÞ ¼

P
kcdkðxÞ:

The main advantage of the crowding approach described
above is that a measure of population density around a
solution is computed without requiring a user-defined
parameter such as sshare or the kth closest neighbor. In
NSGA-II, this crowding distance measure is used as a tie-
breaker in a selection technique called the crowded tourna-
ment selection operator: Randomly select two solutions x

and y; if the solutions are in the same non-dominated front,
the solution with a higher crowding distance is the winner.
Otherwise, the solution with the lowest rank is selected.

5.2.3. Cell-based density

In this approach [13,19,20,29], the objective space is
divided into K-dimensional cells (see Fig. 2c). The number of
solutions in each cell is defined as the density of the cell, and
the density of a solution is equal to the density of the cell in
which the solution is located. This density information is
used to achieve diversity similarly to the fitness sharing
approach. For example, in PESA [14], between two non-
dominated solutions, the one with a lower density is
preferable. The procedure of PESA is given as follows:
Procedure PESA:
NE ¼ the maximum size of non-dominated archive E,
NP ¼ the population size, n ¼ number of the grids along

each objective function axis.

ARTICLE IN PRESS

z2

(b)

a

a

x

acd1(x)

cd2(x)

a a

a

a

a

z2

z1(c)

a

a

x

a

a a

a

a

a

0

0

30

11

1

1

01

2

z2

z1 z1(a)

a

a

x

a

a a

a

a

a

σ share

0

Fig. 2. Diversity methods used in multi-objective GA.

A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–10071000
Step 1: Start with a random initial population P0 and set
external achieve E0 ¼+, t ¼ 0.
Step 2: Divide the normalized objective space into nK

hyper-cubes where n is the number of grids along a
single objective axis and K is the number of objectives.
Step 3: Update non-dominated archive Et by incorpor-
ating new solutions from Pt one by one as follows:

Case 1: If a new solution is dominated by at least a
solution in Et, discard the new solution.
Case 2: If a new solution dominates some solutions in
Et, remove those dominated solutions from Et and
add to the new solution to Et. Update the member-
ship of the hyper-cubes.
Case 3: If a new solution is not dominated by and
does not dominate any solution in Et, add this
solution to Et. If j Et j¼ NE þ 1, randomly choose a
solution from the most crowded hyper-cubes to be
removed. Update the membership of the hyper-cubes.
Step 4: If the stopping criterion is satisfied, stop and
return Et.
Step 5: Set Pt ¼+, and select solutions from Et for
crossover and mutation based on the density informa-
tion of the hyper-cubes. For example, if binary
tournament selection is used, the winner is the solution
located in the less crowded hyper-cubes. Apply cross-
over and mutation to generate NP offspring and copy
them to Pt+1.
Step 6: Set t ¼ tþ 1 and go to Step 3.

PESA-II [15] follows a more direct approach, namely
region-based selection, where cells but not individual
solutions are selected during the selection process. In this
approach, a cell that is sparsely occupied has a higher
chance to be selected than a crowded cell. Once a cell is
selected, solutions within the cell are randomly chosen to
participate to crossover and mutation.
Lu and Yen [19] and Yen and Lu [20] developed an

efficient approach to identify a solution’s cell in case of
dynamic cell dimensions. In this approach, the width of a
cell along the kth objective dimension is ðzmax

k � zmin
k Þ=nk

where nk is the number cells dedicated to the kth objective
dimension and zmax

k and zmin
k are the maximum and

minimum values of the objective function k so far in the
search, respectively. Therefore, cell boundaries are updated
when a new maximum or minimum objective function
value is discovered. RDGA [19] uses a cell-based density
approach in an interesting way to convert a general
K-objective problem into a bi-objective optimization

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 1001
problem with the objectives to minimize the individual
rank value and density of the population. The procedure of
this approach is given as follows:

Procedure RDGA:
nk ¼ number of cells along the axis of objective function k.

Step 1: Create a random parent population P0 of size N,
t ¼ 0.
Step 2: Divide the normalized objective space into
n1� n2�?� nK hyper-cells.
Step 3: Update the cells dimensions as dk ¼ ðz

max
k �

zmin
k Þ=nk:

Step 4: Identify the cell membership of each solution
xAPt.
Step 5: Assign a density value each solution xAPt as
mðx; tÞ ¼the number of solutions located in the same cell
with x.

Step 6: Use the automatic accumulated tanking method
to rank each solution as follows:

rðx; tÞ ¼ 1þ
X

y2P;y�x

rðy; tÞ.

Step 7: Use the rank and density of each solution as the
objectives of a bi-objective optimization problem. Use
VEGA’s fitness assignment approach to minimize the
individual rank value and the population density while
creating the mating pool. In addition, randomly copy
solutions from the non-dominated archive to the mating
pool.
Step 8: Apply crossover and mutation on the mating
pool. A selected parent performs crossover only with the
best solution in the parent’s cell and neighborhood cells.
Do not allow an offspring to be located in a cell
dominated by its parents. Replace the selected parent if
it is dominated by the offspring. Update non-dominated
solutions archive. Set t ¼ tþ 1, go to Step 3 if the
stopping condition is not satisfied.

The main advantage of the cell-based density approach is
that a global density map of the objective function space is
obtained as a result of the density calculation. The search
can be encouraged toward sparsely inhabited regions of the
objective function space based on this map. RDGA [19]
uses a method based on this global density map to push
solutions out of high density areas towards low density
areas. Another other advantage is its computational
efficiency compared to the niching or neighborhood-based
density techniques. Yen and Lu [20] proposed several data
structures and algorithms to efficiently store cell informa-
tion and modify cell densities.
5.3. Elitisim

Elitism in the context of single-objective GA means that
the best solution found so far during the search always
survives to the next generation. In this respect, all non-
dominated solutions discovered by a multi-objective
GA are considered elite solutions. However, implementa-
tion of elitism in multi-objective optimization is not
as straightforward as in single objective optimization
mainly due to the large number of possible elitist solutions.
Early multi-objective GA did not use elitism. However,
most recent multi-objective GA and their variations use
elitism. As discussed in [11,36,37], multi-objective GA
using elitist strategies tend to outperform their non-elitist
counterparts. Multi-objective GA use two strategies to
implement elitism [26]: (i) maintaining elitist solutions in
the population, and (ii) storing elitist solutions in an
external secondary list and reintroducing them to the
population.

5.3.1. Strategies to maintain elitist solutions in the

population

Random selection does not ensure that a non-dominated
solution will survive to the next generation. A straightfor-
ward implementation of elitism in a multi-objective GA is
to copy all non-dominated solutions in population Pt to
population Pt+1, then fill the rest of Pt+1 by selecting
from the remaining dominated solutions in Pt. This
approach will not work when the total number of non-
dominated parent and offspring solutions is larger than NP.
To address this problem, several approaches have been
proposed.
Konak and Smith [38,39] proposed a multi-objective GA

with a dynamic population size and a pure elitist strategy.
In this multi-objective GA, the population includes only
non-dominated solutions. If the size of the population
reaches an upper bound Nmax, Nmax�Nmin solutions are
removed from the population giving consideration to
maintaining the diversity of the current non-dominated
front. To achieve this, Pareto domination tournament
selection is used as follows [7]. Two solutions are randomly
chosen and the solution with the higher niche count is
removed since all solutions are non-dominated. A similar
pure elitist multi-objective GA with a dynamic population
size has also been proposed [17].
NSGA-II uses a fixed population size of N. In generation

t, an offspring population Qt of size N is created from
parent population Pt and non-dominated fronts F1, F2,y,
FR are identified in the combined population Pt[Qt. The
next population Pt+1 is filled starting from solutions in F1,
then F2, and so on as follows. Let k be the index of a non-
dominated front Fk that j F 1 [F2 [� � � [F k jpN and
j F1 [F 2 [� � � [F k [Fkþ1 j4N. First, all solutions in
fronts F1, F2,y, Fk are copied to Pt+1, and then the least
crowded (N� j Ptþ1 j) solutions in Fk+1 are added to Pt+1.
This approach makes sure that all non-dominated solu-
tions (F1) are included in the next population if j F1 jpN,
and the secondary selection based on crowding distance
promotes diversity. The complete procedure of NSGA-II is
given below to demonstrate an implementation of elitism
without using a secondary external population.

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–10071002
Procedure NSGA-II:

Step 1: Create a random parent population P0 of size N.

Set t ¼ 0.
Step 2: Apply crossover and mutation to P0 to create
offspring population Q0 of size N.

Step 3: If the stopping criterion is satisfied, stop and
return to Pt.
Step 4: Set Rt ¼ Pt [Qt.
Step 5: Using the fast non-dominated sorting algorithm,
identify the non-dominated fronts F1, F2, y,Fk in Rt.
Step 6: For i ¼ 1,y,k do following steps:

Step 6.1: Calculate crowding distance of the solutions
in Fi (as described in Section 5.2.2).
Step 6.2: Create Pt+1 as follows:

Case 1: If j Ptþ1 j þ j F i jpN, then set Pt+1

¼ Pt+1[Fi;
Case 2: If j Ptþ1 j þ j F i j4N, then add the least
crowded N� j Ptþ1 j solutions from Fi to Pt+1.
Step 7: Use binary tournament selection based on the
crowding distance to select parents from Pt+1. Apply
crossover and mutation to Pt+1 to create offspring
population Qt+1 of size N.
Step 8: Set t ¼ tþ 1, and go to Step 3.

Note that when the combined parent and offspring
population includes more N non-dominated solutions,
NSGA-II becomes as a pure elitist GA where only non-
dominated solutions participate in crossover and selection.
The main advantage of maintaining non-dominated solu-
tions in the population is straightforward implementation.
In this strategy, the population size is an important GA
parameter since no external archive is used to store
discovered non-dominated solutions.

5.3.2. Elitism with external populations

When an external list is used to store elitist solutions,
several issues must be addressed. The first issue is which
solutions are going to be stored in elitist list E. Most multi-
objective GA store non-dominated solutions identified so
far during the search [11], and E is updated each time a new
solution is created by removing elitist solutions dominated
by a new solution or adding the new solution if it is not
dominated by any existing elitist solution. This is a
computationally expensive operation. Several data struc-
tures have been proposed to efficiently store, update, and
search in list E [40,41]. Another issue is the size of list E.
Since there might possibly exist a very large number of
Pareto optimal solutions for a problem, the elitist list can
grow extremely large. Therefore, pruning techniques have
been proposed to control the size of E. For example, SPEA
uses the average linkage clustering method [42] to reduce
the size of E to an upper limit N when the number of the
non-dominated solutions exceeds N as follows:

Step 1: Initially, assign each solution xAE to a cluster ci,
C ¼ fc1; c2; . . . ; cMg;
Step 2: Calculate the distance between all pairs of
clusters ci and cj as follows:

dci ;cj
¼

1

jcij � jcjj

X
x2ci ;y2cj

dðx; yÞ.

Here, the distance dðx; yÞ can be calculated in objective
function space using Eq. (3) or in decision variable space
using Eq. (5).
Step 3: Merge the cluster pair ci and cj with the
minimum distance among all clusters into a new cluster.
Step 4: If j C jpN, go to Step 5, else go to Step 2.
Step 5: For each cluster, determine a solution with the
minimum average distance to all other solutions in the
same cluster (called the centroid solution). Keep the
centroid solutions for every cluster and remove other
solutions from E.

The final issue is the selection of elitist solutions from E

to be reintroduced to the population. In [11,19,20],
solutions for Pt+1 are selected from the combined
population of Pt and Et. To implement this strategy,
populations Pt and Et are combined, a fitness value is
assigned to each solution in the combined population
Pt[Et, and then N solutions are selected for the next
generation Pt+1 based on the assigned fitness values.
Another strategy is to reserve room for n elitist solutions in
the next population [43]. In this strategy, N�n solutions are
selected from parents and newly created offspring and n

solutions are selected from Et.
SPEA and SPEA2 are both very effective algorithms that

use an external list to store non-dominated solution
discovered so far in the search. They are also excellent
examples for the use of external populations. The
procedure of the SPEA2 is given as follows:
Procedure SPEA2:
NE ¼ the maximum size of the non-dominated archive

E,
NP ¼ the population size,
k ¼ parameter for density calculation k ¼

ffi
NE þNP

p� �
.

Step 1: Randomly generate an initial solution P0 and set
E0 ¼+.
Step 2: Calculate the fitness of each solution x in Pt [Et

as follows:
Step 2.1: rðx; tÞ ¼

P
y2Pt[Et;y�x

sðy; tÞ where sðy; tÞ is
the number of solutions in Pt [Et dominated by
solution y.

Step 2.2: Calculate the density as mðx; tÞ ¼ ðsk
x þ 1Þ�1

where sk
x is the distance between solution x and its

kth nearest neighbor.
Step 2.3: Assign a fitness value as f ðx; tÞ ¼
rðx; tÞ þmðx; tÞ.
Step 3: Copy all non-dominated solutions in Pt [Et to
Etþ1. Two cases are possible:

Case 1: If j Etþ1 j4NE , then truncate j Etþ1 j �NE

solutions by iteratively removing solutions with the
maximum sk distances. Break any tie by examining sl

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 1003
for l ¼ k21,y,1 sequentially.
Case 2: If j Etþ1 jpNE , copy the best NE� j Etþ1 j

dominated solutions according to their fitness values
from Pt [Et to Etþ1.
Step 4: If the stopping criterion is satisfied, stop and
return non-dominated solutions in Etþ1.
Step 5: Select parents from Etþ1 using binary tourna-
ment selection with replacement.
Step 6: Apply crossover and mutation operators to the
parents to create NP offspring solutions. Copy offspring
to Ptþ1, t ¼ tþ 1, and go to Step 2.

Other examples of elitist approaches using external
populations are PESA [14], RDGA [44], RWGA [43],
and DMOEA [20].

5.4. Constraint handling

Most real-world optimization problems include con-
straints that must be satisfied. An excellent survey on the
constraint handling techniques used in evolutionary algo-
rithms is given by Coello [45]. A single-objective GA may
use one of four different constraint handling strategies: (i)
discarding infeasible solutions (the ‘‘death penalty’’); (ii)
reducing the fitness of infeasible solutions by using a
penalty function; (iii) crafting genetic operators to always
produce feasible solutions; and (iv) transforming infeasible
solutions to be feasible (‘‘repair’’). Handling of constraints
has not been adequately researched for multi-objective GA
[46]. For instance, all major multi-objective GA assume
problems without constraints. While constraint handling
strategies (i), (iii), and (iv) are directly applicable to the
multi-objective case, implementation of penalty function
strategies, which is the most frequently used constraint
handling strategy in single-objective GA, is not straightfor-
ward in multi-objective GA due to fact that fitness
assignment is based on the non-dominance rank of a
solution, not on its objective function values.

Jimenez et al. [46,47] proposed a niched selection
strategy to address infeasibility in multi-objective problems
as follows:

Step 1: Randomly chose two solutions x and y from the
population.
Step 2: If one of the solutions is feasible and the other
one is infeasible, the winner is the feasible solution, and
stop. Otherwise, if both solutions are infeasible go to
Step 3, else go to Step 4.
Step 3: In this case, solutions x and y are both infeasible.
Then, select a random reference set C among infeasible
solutions in the population. Compare solutions x and y

to the solutions in reference set C with respect to their
degree of infeasibility. In order to achieve this, calculate
a measure of infeasibility (e.g., the number of con-
straints violated or total constraint violation) for
solutions x, y, and those in set C. If one of solutions x
and y is better and the other one is worse than the best
solution in C, with respect to the calculated infeasibility
measure, then the winner is the least infeasible solution.
However, if there is a tie, that is, both solutions x and y

are either better or worse than the best solution in C,
then their niche count in decision variable space (Eq.
(5)) is used for selection. In this case, the solution with
the lower niche count is the winner.
Step 4: In the case that solutions x and y are both
feasible, select a random reference set C among feasible
solutions in the population. Compare solutions x and y

to the solutions in set C. If one of them is non-
dominated in set C, and the other is dominated by at
least one solution, the winner is the former. Otherwise,
there is a tie between solutions x and y, and the niche
count of the solutions is calculated in decision variable
space. The solution with the smaller niche count is the
winner of the tournament selection.

The procedure above is a comprehensive approach to
deal with infeasibility while maintaining diversity and
dominance of the population. The main disadvantages of
this procedure are its computational complexity and
additional parameters such as the size of reference set C

and niche size. However, modifications are also possible. In
Step 4, for example, the niche count of the solutions could
be calculated in objective function space instead of decision
variable space. In Step 3, the solution with the least
infeasibility could be declared as the winner without
comparing solutions x and y to a reference set C with
respect to infeasibility. Such modifications could reduce the
computational complexity of the procedure.
Deb et al. [16] proposed the constrain-domination

concept and a binary tournament selection method based
on it, called a constrained tournament method. A solution
x is said to constrain-dominate a solution y if either of the
following cases are satisfied:

Case 1: Solution x is feasible and solution y is infeasible.
Case 2: Solutions x and y are both infeasible; however,
solution x has a smaller constraint violation than y.
Case 3: Solutions x and y are both feasible, and solution
x dominates solution y.

In the constraint tournament method, first, non-con-
strain-dominance fronts F1, F2, F3,y, FR are identified in a
similar way to that defined in [3], but by using the
constrain-domination criterion instead of the regular
domination concept. Note that set F1 corresponds to the
set of feasible non-dominated solutions in the population
and front Fi is more preferred than Fj for ioj. In the
constraint tournament selection, two solutions x and y are
randomly chosen from the population. Between x and y,
the winner is the one in a more preferred non-constrain-
dominance front. If solutions x and y are both in the same
front, then the winner is decided based on niche counts or
crowding distances of the solution. The main advantages of
the constrained tournament method are that it requires

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–10071004
fewer parameters and can be easily integrated into a multi-
objective GA. A similar approach, called dominance-based
tournament selection, was used by Coello and Montes [48]
to solve single objective problems with several difficult
constraints using a modified version of NPGA [7]. In this
selection approach, dominance is defined with respect to
the constraint violations of two solutions. Infeasible
solution x is said to constrain-dominate y if it has fewer
or equal constraint violations than solution y for every
constraint of the problem, but less violation for at least one
constraint. A tie between two constrain-non-dominated
solutions is resolved by the total constraint violation of the
solutions.

5.5. Parallel and hybrid multi-objective GA

All comparative studies on multi-objective GA agree
that elitism and diversity preservation mechanisms improve
performance. However, implementing elitism and diversity
preservation strategies usually require substantial compu-
tational effort and computer memory. In addition, evalua-
tion of objective functions may take considerable time in
real-life problems. Therefore, researchers have been inter-
ested in reducing execution time and resource requirements
of multi-objective GA using advanced data structures. One
of the latest trends is parallel and distributed processing.
Several recent papers [49–52] presented parallel implemen-
tation of multi-objective GA over multiple processors.

Hybridization of GA with local search algorithms is
frequently applied in single-objective GA. This approach is
usually referred to as a memetic algorithm [53]. Generally,
a local search algorithm proceeds as follows:

Step 1: Start with an initial solution x.
Step 2: Generate a set of neighbor solutions around
solution x using a simple perturbation rule.
Step 3: If the best solution in the neighborhood set is
better than x, replace x with this solution and go to Step
2, else stop.

A local search algorithm is particularly effective in
finding local optima if the solution space around the initial
solution is convex. This is usually difficult to achieve using
standard GA operators. In hybridization of multi-objective
GA with local search algorithms, important issues are: (i)
selecting a solution to apply the local search and (ii)
identifying a solution in the neighborhood as the new best
solution when multiple non-dominated local solutions
exist. Several approaches have been proposed to address
these two issues as follows.

Paquete and Stutzle [54] described a bi-objective GA
where local search is used to generate initial solutions by
optimizing only one objective. Deb and Goel [55] applied
local search to only final solutions. In Ishibuchi and
Murata’s approach [43], a local search procedure is applied
to each offspring generated by crossover, using the same
weight vector of the offspring’s parents to evaluate
neighborhood solutions. Similarly, Ishibuchi et al. [56]
also used the weighted sum of the objective functions to
evaluate solutions during the local search. However, the
local search is selectively applied to only promising
solutions, and weights are also randomly generated,
instead of using the parents’ weight vector. Knowles and
Corne [53] presented a memetic version of PAES, called M-
PAES. PAES uses the dominance concept to evaluate
solutions. Therefore, in M-PAES, a set of local non-
dominated solutions is used as a comparison set for
solutions investigated during local search. When a new
solution is created in the neighborhood, it is only compared
with this local non-dominated set and necessary updates
are performed. Local search is terminated after a maximum
number of local solutions are investigated or a maximum
number of local moves are performed without any
improvement. Tan et al. [57] proposed applying a local
search procedure to only solutions that are located apart
from others. In addition, the neighborhood size of the local
search depends on the density or crowdedness of solutions.
Being selective in applying a local search, this strategy is
computationally efficient while maintaining diversity.

6. Multi-objective GA for reliability optimization

Many engineering problems have multiple objectives,
including engineering system design and reliability optimi-
zation. There have been several interesting and successful
implementations of multi-objective GA for this class of
problems. These are described in the following paragraphs.
Marseguerra et al. [58] determined optimal surveillance

test intervals using multi-objective GA with the goal of
improving reliability and availability. Their research
implemented a multi-objective GA which explicitly ac-
counts for the uncertainties in the parameters. The
objectives considered were the inverse of the expected
system failure probability and the inverse of its variance.
These are used to drive the genetic search toward solutions
which are guaranteed to give optimal performance with
high assurance, i.e., low estimation variance. They success-
fully applied their procedure to a complex system, a
residual heat removal safety system for a boiling water
reactor.
Martorell et al. [59] studied the selection of technical

specifications and maintenance activities at nuclear power
plants to increase reliability, availability and maintain-
ability (RAM) of safety-related equipment. However, to
improve RAM, additional limited resources (e.g. money,
work force) are required, posing a multi-objective problem.
They demonstrated the viability and significance of their
proposed approach using multi-objective GA for an
emergency diesel generator system.
Additionally, Martorell et al. [60] considered the optimal

allocation of more reliable equipment, testing and main-
tenance activities to assure high RAM levels for safety-
related systems. For these problems, the decision-maker
encounters a multi-objective optimization problem where

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 1005
the parameters of design, testing and maintenance are
decision variables. Solutions were obtained by using both
single-objective GA and multi-objective GA, which were
demonstrated to solve the problem of testing and main-
tenance optimization based on unavailability and cost
criteria.

Sasaki and Gen [61] introduced a multi-objective
problem which had fuzzy multiple objective functions
and constraints with a generalized upper bounding (GUB)
structure. They solved this problem by using a new
hybridized GA. This approach leads to a flexible optimal
system design by applying fuzzy goals and fuzzy con-
straints. A new chromosome representation was introduced
in their work. To demonstrate the effectiveness of their
method, a large-scale optimal system reliability design
problem was analyzed.

Reliability allocation to minimize total plant costs,
subject to an overall plant safety goal, was presented by
Yang et al. [62]. For their problem, design optimization is
needed to improve the design, operation and safety of new
and/or existing nuclear power plants. They presented an
approach to determine the reliability characteristics of
reactor systems, subsystems, major components and plant
procedures that are consistent with a set of top-level
performance goals. To optimize the reliability of the
system, the cost for improving and/or degrading the
reliability of the system was also included in the reliability
allocation process creating a multi-objective problem. GA
was applied to the reliability allocation problem of a
typical pressurized water reactor.

Elegbede and Adjallah [63] presented a methodology to
optimize the availability and the cost of repairable
parallel–series systems. It is a multi-objective combinator-
ial optimization, modeled with continuous and discrete
variables. They transformed the problem into a single
objective problem and used traditional GA.

Deb et al. [64] formulated a bi-objective optimization
problem of minimizing total wire length and minimizing
the failure rate in the printed circuit board design. They
implemented NSGA-II to solve the problem. The results in
the best Pareto fronts found were analyzed to understand
the trade-offs between reliability and printed circuit board
design.

Kumar et al. [65] presented a multi-objective GA
approach to design telecommunication networks while
simultaneously minimizing network performance and de-
sign costs under a reliability constraint.
7. Conclusions

Most real-world engineering problems involve simulta-
neously optimizing multi-objectives where considerations
of trade-offs is important. In the last decade, evolutionary
approaches have been the primary tools to solve real-world
multi-objective problems. This paper presented multi-
objective GA by focusing on their components and the
salient issues encountered when implementing multi-
objective GA.
Consideration of the computational realities along with

the performance of the different methods is needed. Also,
nearly all problems will require some customization of the
GA approaches to properly handle the objectives, con-
straints, encodings and scale. It is envisioned that the
Pareto solutions identified by GA would be pared down to
a representative small set for the designer or engineer to
further investigate. Therefore, for most implementations it
is not vital to find every Pareto optimal solution, but
rather, efficiently and reliably identify Pareto optimal
solutions across the range of interest for each objective
function.
In the reliability field, there are complicating factors—

namely the usual computational effort require to evaluate
or estimate reliability or availability metrics. This makes
consideration of computational effort especially relevant
and the user might need to define several options with
differing effort (such as bounds, estimation, exact calcula-
tion) that are used for different phases of the search or for
different solutions or regions. Also, control of the Pareto
set size is critical to keep the computational effort to a
reasonable level. While these aspects make the use of
multiobjective GA more challenging in the reliability field,
the method still offers the most promise of any with its
powerful population-based search and its flexibility.
References

[1] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolu-

tionary algorithms: empirical results. Evol Comput 2000;8(2):173–95.

[2] Holland JH. Adaptation in natural and artificial systems. Ann Arbor:

University of Michigan Press; 1975.

[3] Goldberg DE. Genetic algorithms in search, optimization, and

machine learning. Reading, MA: Addison-Wesley; 1989.

[4] Jones DF, Mirrazavi SK, Tamiz M. Multiobjective meta-heuristics:

an overview of the current state-of-the-art. Eur J Oper Res

2002;137(1):1–9.

[5] Schaffer JD. Multiple objective optimization with vector evaluated

genetic algorithms. In: Proceedings of the international conference on

genetic algorithm and their applications, 1985.

[6] Fonseca CM, Fleming PJ. Multiobjective genetic algorithms. In: IEE

colloquium on ‘Genetic Algorithms for Control Systems Engineering’

(Digest No. 1993/130), 28 May 1993. London, UK: IEE; 1993.

[7] Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic

algorithm for multiobjective optimization. In: Proceedings of the first

IEEE conference on evolutionary computation. IEEE world congress

on computational intelligence, 27–29 June, 1994. Orlando, FL, USA:

IEEE; 1994.

[8] Hajela P, lin C-y. Genetic search strategies in multicriterion optimal

design. Struct Optimization 1992;4(2):99–107.

[9] Murata T, Ishibuchi H. MOGA: multi-objective genetic algorithms.

In: Proceedings of the 1995 IEEE international conference on

evolutionary computation, 29 November–1 December, 1995. Perth,

WA, Australia: IEEE; 1995.

[10] Srinivas N, Deb K. Multiobjective optimization using nondominated

sorting in genetic algorithms. J Evol Comput 1994;2(3):221–48.

[11] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a

comparative case study and the strength Pareto approach. IEEE

Trans Evol Comput 1999;3(4):257–71.

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–10071006
[12] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength

Pareto evolutionary algorithm. Swiss Federal Institute Techonology:

Zurich, Switzerland; 2001.

[13] Knowles JD, Corne DW. Approximating the nondominated front

using the Pareto archived evolution strategy. Evol Comput

2000;8(2):149–72.

[14] Corne DW, Knowles JD, Oates MJ. The Pareto envelope-based

selection algorithm for multiobjective optimization. In: Proceedings

of sixth international conference on parallel problem solving from

Nature, 18–20 September, 2000. Paris, France: Springer; 2000.

[15] Corne D, Jerram NR, Knowles J, Oates J. PESA-II: region-based

selection in evolutionary multiobjective optimization. In: Proceedings

of the genetic and evolutionary computation conference (GECCO-

2001), San Francisco, CA, 2001.

[16] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol

Comput 2002;6(2):182–97.

[17] Sarker R, Liang K-H, Newton C. A new multiobjective evolutionary

algorithm. Eur J Oper Res 2002;140(1):12–23.

[18] Coello CAC, Pulido GT. A micro-genetic algorithm for multi-

objective optimization. In: Evolutionary multi-criterion optimization.

First international conference, EMO 2001, 7–9 March, 2001. Zurich,

Switzerland: Springer; 2001.

[19] Lu H, Yen GG. Rank-density-based multiobjective genetic algorithm

and benchmark test function study. IEEE Trans Evol Comput

2003;7(4):325–43.

[20] Yen GG, Lu H. Dynamic multiobjective evolutionary algorithm:

adaptive cell-based rank and density estimation. IEEE Trans Evol

Comput 2003;7(3):253–74.

[21] Coello CAC. A comprehensive survey of evolutionary-based multi-

objective optimization techniques. Knowl Inform Syst 1999;1(3):

269–308.

[22] Coello CAC. An updated survey of evolutionary multiobjective

optimization techniques: state of the art and future trends. In:

Proceedings of the 1999 congress on evolutionary computation-

CEC99, 6–9 July 1999. Washington, DC, USA: IEEE.

[23] Coello CAC. An updated survey of GA-based multiobjective

optimization techniques. ACM Comput Surv 2000;32(2):109–43.

[24] Fonseca CM, Fleming PJ. Genetic algorithms for multiobjective

optimization: formulation, discussion and generalization. In: Pro-

ceedings of the ICGA-93: fifth international conference on genetic

algorithms, 17–22 July 1993. Urbana-Champaign, IL, USA: Morgan

Kaufmann; 1993.

[25] Fonseca CM, Fleming PJ. Multiobjective optimization and

multiple constraint handling with evolutionary algorithms. I. A

unified formulation. IEEE Trans Syst Man Cybern A 1998;28(1):

26–37.

[26] Jensen MT. Reducing the run-time complexity of multiobjective EAs:

The NSGA-II and other algorithms. IEEE Trans Evol Comput

2003;7(5):503–15.

[27] Xiujuan L, Zhongke S. Overview of multi-objective optimization

methods. J Syst Eng Electron 2004;15(2):142–6.

[28] Coello CAC. 2005, http://www.lania.mx/�ccoello/EMOO/EMOObib.

html

[29] Knowles J, Corne D. The Pareto archived evolution strategy: a new

baseline algorithm for Pareto multiobjective optimisation. In:

Proceedings of the 1999 congress on evolutionary computation-

CEC99, 6–9 July 1999. Washington, DC, USA: IEEE; 1999.

[30] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization:

NSGA-II. In: Proceedings of sixth international conference on

parallel problem solving from nature, 18–20 September, 2000. Paris,

France: Springer; 2000.

[31] Murata T, Ishibuchi H, Tanaka H. Multi-objective genetic algorithm

and its applications to flowshop scheduling. Comput Ind Eng

1996;30(4):957–68.

[32] Kursawe F. A variant of evolution strategies for vector optimization.

In: Parallel problem solving from nature. First workshop, PPSN 1
proceedings, 1–3 October, 1990. Dortmund, West Germany: Springer;

1991.

[33] Goldberg DE, Richardson J. Genetic algorithms with sharing for

multimodal function optimization. In: Genetic algorithms and their

applications: proceedings of the second international conference on

genetic algorithms, 28–31 July, 1987. Cambridge, MA, USA:

Lawrence Erlbaum Associates; 1987.

[34] Deb K, Goldberg DE. An investigation of of niche an species

fromation in genetic function optimization. In: Proceedings of the

third international conference on genetic algorithms, George Mason

University, 1989.

[35] Miller BL, Shaw MJ. Genetic algorithms with dynamic niche sharing

for multimodal function optimization. In: Proceedings of the 1996

IEEE international conference on evolutionary computation,

ICEC’96, May 20–22, 1996, Nagoya, Japan. Piscataway, NJ, USA:

IEEE; 1996.

[36] Deb K. Multi-objective optimization using evolutionary algorithms.

New York: Wiley; 2001.

[37] Van Veldhuizen DA, Lamont GB. Multiobjective evolutionary

algorithms: analyzing the state-of-the-art. Evol Comput 2000;8(2):

125–47.

[38] Konak A, Smith AE. Multiobjective optimization of survivable

networks considering reliability. In: Proceedings of the 10th interna-

tional conference on telecommunication systems. Monterey, CA:

Naval Postgraduate School; 2002.

[39] Konak A, Smith AE. Capacitated network design considering

survivability: an evolutionary approach. J Eng Optim 2004;36(2):

189–205.

[40] Fieldsend JE, Everson RM, Singh S. Using unconstrained elite

archives for multiobjective optimization. IEEE Trans Evol Comput

2003;7(3):305–23.

[41] Mostaghim S, Teich J, Tyagi A. Comparison of data structures for

storing Pareto-sets in MOEAs. In: Proceedings of the 2002 world

congress on computational intelligence—WCCI’02, 12–17 May, 2002.

Honolulu, HI, USA: IEEE; 2002.

[42] Morse JN. Reducing the size of the nondominated set: pruning by

clustering. Comput Oper Res 1980;7(1–2):55–66.

[43] Ishibuchi H, Murata T. Multi-objective genetic local search

algorithm. In: Proceedings of the IEEE international conference on

evolutionary computation, 20–22 May, 1996. Nagoya, Japan: IEEE;

1996.

[44] Lu H, Yen GG. Rank-density based multiobjective genetic algorithm.

In: Proceedings of the 2002 world congress on computational

intelligence—WCCI’02, 12–17 May, 2002. Honolulu, HI, USA:

IEEE; 2002.

[45] Coello CAC. A survey of constraint handling techniques used with

evolutionary algorithms. Veracruz, Mexico: Laboratorio Nacional de

Informtica Avanzada; 1999.

[46] Jimenez F, Gomez-Skarmeta AF, Sanchez G, Deb K. An evolu-

tionary algorithm for constrained multi-objective optimization. In:

Proceedings of the 2002 world congress on computational intelli-

gence—WCCI’02, 12–17 May, 2002. Honolulu, HI, USA: IEEE;

2002.

[47] Jimenez F, Verdegay JL, Gomez-Skarmeta AF. Evolutionary

techniques for constrained multiobjective optimization problems.

In: Workshop on multi-criterion optimization using evolutionary

methods GECCO-1999, 1999.

[48] Coello CAC, Montes EM. Constraint-handling in genetic algorithms

through the use of dominance-based tournament selection. Adv Eng

Inform 2002;16(3):193–203.

[49] de Toro F, Ortega J, Fernandez J, Diaz A. PSFGA: a parallel genetic

algorithm for multiobjective optimization. In: Proceedings of the 10th

Euromicro workshop on parallel, distributed and network-based

processing, 9–11 January, 2002. Canary Islands, Spain: IEEE

Computer Society.

[50] Van Veldhuizen DA, Zydallis JB, Lamont GB. Considerations in

engineering parallel multiobjective evolutionary algorithms. IEEE

Trans Evol Comput 2003;7(2):144–73.

http://www.lania.mx/~ccoello/EMOO/EMOObib.html
http://www.lania.mx/~ccoello/EMOO/EMOObib.html
http://www.lania.mx/~ccoello/EMOO/EMOObib.html

ARTICLE IN PRESS
A. Konak et al. / Reliability Engineering and System Safety 91 (2006) 992–1007 1007
[51] Wilson LA, Moore MD, Picarazzi JP, Miquel SDS. Parallel genetic

algorithm for search and constrained multi-objective optimization.

In: Proceedings of the 18th international parallel and distributed

processing symposium, 26–30 April, 2004. Santa Fe, NM, USA:

IEEE Computer Society; 2004.

[52] Xiong S, Li F. Parallel strength Pareto multiobjective evolutionary

algorithm. In: Proceedings of the fourth international conference on

parallel and distributed computing, applications and technologies,

27–29 August, 2003. Chengdu, China: IEEE; 2003.

[53] Knowles JD, Corne DW. M-PAES: a memetic algorithm for

multiobjective optimization. In: Proceedings of the 2000 congress

on evolutionary computation, 16–19 July, 2000. La Jolla, CA, USA:

IEEE; 2000.

[54] Paquete L, Stutzle T. A two-phase local search for the biobjective

traveling salesman problem. In: Evolutionary multi-criterion optimi-

zation. Proceedings of the second international conference, EMO

2003, 8–11 April, 2003. Faro, Portugal: Springer; 2003.

[55] Deb K, Goel T. A hybrid multi-objective evolutionary approach to

engineering shape design. In: Evolutionary multi-criterion optimiza-

tion. Proceedings of the first international conference, EMO 2001,

7–9 March, 2001. Zurich, Switzerland: Springer; 2001.

[56] Ishibuchi H, Yoshida T, Murata T. Balance between genetic search

and local search in memetic algorithms for multiobjective permuta-

tion flowshop scheduling. IEEE Trans Evol Comput 2003;7(2):

204–23.

[57] Tan KC, Lee TH, Khor EF. Evolutionary algorithms with dynamic

population size and local exploration for multiobjective optimization.

IEEE Trans Evol Comput 2001;5(6):565–88.
[58] Marseguerra M, Zio E, Podofillini L. Optimal reliability/availability

of uncertain systems via multi-objective genetic algorithms. IEEE

Trans Reliab 2004;53(3):424–34.

[59] Martorell S, Villanueva JF, Carlos S, Nebot Y, Sanchez A, Pitarch

JL, et al. RAMS+C informed decision-making with application to

multi-objective optimization of technical specifications and main-

tenance using genetic algorithms. Reliab Eng Syst Safety 2005;87(1):

65–75.

[60] Martorell S, Sanchez A, Carlos S, Serradell V. Alternatives and

challenges in optimizing industrial safety using genetic algorithms.

Reliab Eng Syst Safety 2004;86(1):25–38.

[61] Sasaki M, Gen M. A method of fuzzy multi-objective nonlinear

programming with GUB structure by hybrid genetic algorithm. Int J

Smart Eng Syst Des 2003;5(4):281–8.

[62] Yang J-E, Hwang M-J, Sung T-Y, Jin Y. Application of genetic

algorithm for reliability allocation in nuclear power plants. Reliab

Eng Syst Safety 1999;65(3):229–38.

[63] Elegbede C, Adjallah K. Availability allocation to repairable systems

with genetic algorithms: a multi-objective formulation. Reliab Eng

Syst Safety 2003;82(3):319–30.

[64] Deb K, Jain P, Gupta NK, Maji HK. Multiobjective placement of

electronic components using evolutionary algorithms. IEEE Trans

Components Packaging Technol 2004;27(3):480–92.

[65] Kumar R, Parida PP, Gupta M. Topological design of communica-

tion networks using multiobjective genetic optimization. In:

Proceedings of the 2002 world congress on computational

intelligence—WCCI’02, 12–17 May, 2002. Honolulu, HI, USA:

IEEE; 2002.

	Multi-objective optimization using genetic algorithms: A tutorial
	Introduction
	Multi-objective optimization formulation
	Genetic algorithms
	Multi-objective GA
	Design issues and components of multi-objective GA
	Fitness functions
	Weighted sum approaches
	Altering objective functions
	Pareto-ranking approaches

	Diversity: fitness assignment, fitness sharing, and niching
	Fitness sharing
	Crowding distance
	Cell-based density

	Elitisim
	Strategies to maintain elitist solutions in the population
	Elitism with external populations

	Constraint handling
	Parallel and hybrid multi-objective GA

	Multi-objective GA for reliability optimization
	Conclusions
	References

